Midterm Exam - Harmonic Analysis (Elective) B. Math III

26 February, 2024

- (i) Duration of the exam is 3 hours.
- (ii) The maximum number of points you can score in the exam is 100 (total = 110).
- (iii) You are not allowed to consult any notes or external sources for the exam.

Name: _____

Roll Number: _____

1. (20 points) Prove that every finite abelian group is isomorphic (not canonically) to its dual group \hat{G} .

Total for Question 1: 20

2. With justification, for $a, b \in \mathbb{R} \setminus \{0\}$, compute the convolution $f_1 * f_2$ in $L^1(\mathbb{R}, dx)$ if:

(a) (10 points)
$$f_1(x) = \frac{1}{x^2 + a^2}, f_2(x) = \frac{1}{x^2 + b^2}$$

(b) (10 points) $f_1(x) = e^{-x^2/2a}, f_2(x) = e^{-x^2/2b}.$

Total for Question 2: 20

3. (10 points) A generalized character on a topological group G is defined to be a continuous homomorphism of of G into the multiplicative group of \mathbb{C} (denoted by \mathbb{C}^{\times}). With justification, find the generalized characters and unitary characters of $\mathbb{C}^n, \mathbb{C}^{\times}$.

Total for Question 3: 10

4. (20 points) Prove that the Fourier transform gives a homeomorphism of the Schwartz space, $\mathcal{S}(\mathbb{R})$, of rapidly decreasing functions.

Total for Question 4: 20

5. (20 points) Prove that the family of Schwartz functions $\{e^{-(x-a)^2}\}_{a\in\mathbb{R}}$ spans a dense subspace of $\mathcal{S}(\mathbb{R})$.

6. Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of complex numbers such that

$$|a_n| \leq Cn^p$$
, for some $p \in \mathbb{N}$.

- (a) (10 points) Prove that the sequences $S_N = \sum_{n=-N}^N a_n e^{2\pi i n x}$, $T_N := \sum_{n=-N}^N a_n \delta_n$ converge in the sense of tempered distributions.
- (b) (10 points) Prove (from first principles) that

$$\sum_{n\in\mathbb{Z}}e^{2\pi inx} = \sum_{n\in\mathbb{Z}}\delta_n,$$

in the sense of tempered distributions.

Total for Question 6: 20