Midterm Exam - Harmonic Analysis (Elective) B. Math III

26 February, 2024
(i) Duration of the exam is 3 hours.
(ii) The maximum number of points you can score in the exam is 100 (total $=110$).
(iii) You are not allowed to consult any notes or external sources for the exam.

Name: \qquad
Roll Number: \qquad

1. (20 points) Prove that every finite abelian group is isomorphic (not canonically) to its dual group \hat{G}.

Total for Question 1: 20
2. With justification, for $a, b \in \mathbb{R} \backslash\{0\}$, compute the convolution $f_{1} * f_{2}$ in $L^{1}(\mathbb{R}, d x)$ if:
(a) (10 points) $f_{1}(x)=\frac{1}{x^{2}+a^{2}}, f_{2}(x)=\frac{1}{x^{2}+b^{2}}$;
(b) (10 points) $f_{1}(x)=e^{-x^{2} / 2 a}, f_{2}(x)=e^{-x^{2} / 2 b}$.

Total for Question 2: 20
3. (10 points) A generalized character on a topological group G is defined to be a continuous homomorphism of of G into the multiplicative group of \mathbb{C} (denoted by $\left.\mathbb{C}^{\times}\right)$. With justification, find the generalized characters and unitary characters of $\mathbb{C}^{n}, \mathbb{C}^{\times}$.

Total for Question 3: 10
4. (20 points) Prove that the Fourier transform gives a homeomorphism of the Schwartz space, $\mathcal{S}(\mathbb{R})$, of rapidly decreasing functions.

Total for Question 4: 20
5. (20 points) Prove that the family of Schwartz functions $\left\{e^{\left.-(x-a)^{2}\right)}\right\}_{a \in \mathbb{R}}$ spans a dense subspace of $\mathcal{S}(\mathbb{R})$.

Total for Question 5: 20
6. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of complex numbers such that

$$
\left|a_{n}\right| \leq C n^{p}, \text { for some } p \in \mathbb{N} \text {. }
$$

(a) (10 points) Prove that the sequences $S_{N}=\sum_{n=-N}^{N} a_{n} e^{2 \pi i n x}, T_{N}:=\sum_{n=-N}^{N} a_{n} \delta_{n}$ converge in the sense of tempered distributions.
(b) (10 points) Prove (from first principles) that

$$
\sum_{n \in \mathbb{Z}} e^{2 \pi i n x}=\sum_{n \in \mathbb{Z}} \delta_{n},
$$

in the sense of tempered distributions.
Total for Question 6: 20

